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Probability

We call a phenomenon random if we are uncertain about its outcome.

Probability allows us to deal with randomness, by quantifying uncertainty
and measuring the chances of the possible outcomes.

Typically the randomness we have to deal with comes from the sampling
procedure: when we observe data, their values depends on the units we
randomly select.



Examples of random phenomena

> the moment it will first start raining
> the result of a football match
> tomorrow’s price of a stock

> the number of tweets Trump is going to write today



short probability glossary

We call a phenomenon “random” if we are uncertain about its outcome. It is
characterize by:

> Sample Space: the set of all possible outcomes. Its elements are
exhaustive (no possible is left out) and mutually exclusive (only one
outcome can occur).

> Event: a subset of the sample space corresponding to one or more
possible outcomes

> Probability: measure of how likely each element of the sample space is.



The basic ingredients

Random phenomenon: throw of a die

> Sample Space: all the possible outcomes
Q=1{1,2,3,4,5,6}

> Event: “the die returns an even number”
E ={2,4,6}

> Probability:
P(E)=1/2



something to get you started

Two coins are tossed. Each coin has two possible outcomes H (Heads) and T
(Tails).

> Determine the sample space and its size (i.e. how many elements are in
the set)

> Formalize in terms of possible outcomes the event £ =“the faces
appearing on the two coins are different” and determine its size.

A card is drawn at random from a deck of 52 cards.

> Determine the sample space
> Formalize in terms of possible outcomes the event £ =“the card drawn
is a spade”



Recap of Set theory

> Complement ( A€ or A) everything that is not in A.
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Example A = “the die returns an even number”

= A¢ = “the die returns an odd number”



Recap of Set theory

> Complement ( A€ or A) everything that is not in A.

Example A = “the die returns an even number”, A = “the die returns an
odd number”



Recap of Set theory

> Intersection (A N B) given two events A, B, everything that is in both A
and B.

Example A = “the die returns an even number”, B = “the die returns a
number smaller than 5”

= ANB={2,4}



Recap of Set theory

> Intersection (A N B) given two events A, B, everything that is in both A
and B.

Example A = “the die returns an even number”, B = “the die returns a 5"
= ANB=10 A and B are disjoint



Recap of Set theory

> Union (A U B) given two events A, B, everything that is in either A, B or
in both.

Example A = “the die returns an even number”, B = “the die returns a 5"
= AUB={2,4,5,6}



Some useful relationships

Probability Axiomes...
>0<P(A)<1
> P()=1
> P(0)=0



Some useful relationships

Probability Axiomes...
>0<P(A)<1
> P()=1
> P(0)=0

... and some trivial consequences
> P(A¢) =1— P(4)
> P(AUB) = P(A)+ P(B)— P(ANB)
if A, B are disjoint then P(AU B) = P(A) + P(B)



something we don't really focus about

> Classical approach: assigning probabilities based on the assumption of
equally likely outcomes.

> Frequency approach: assigning probabilities as the limit of the relative
frequency of the event happening in infinite repetition of the random
experiment.

> Subjective approach: assigning probabilities based on the assignor’s
judgment / historical data.

Regardless of the approach we follow, probability is a measure of
uncertainty, i.e. it quantifies how much we do not know, hence it strongly
depends on the information available to us.



Which of the following events has probability 0?

Choosing an odd number from 1 to 10.

Getting an even number after rolling a single 6-sided die.
Choosing a white marble from a jar of 25 green marbles.
None of the above.

v v v v

There are 4 parents, 3 students and 6 teachers in a room. If a person is
selected at random, what is the probability that it is a teacher or a student?

What is the probability that an Italian newborn is a girl?



based on the Classical approach to probability evaluation

Which of the following events has probability 0?

Choosing an odd number from 1 to 10.

Getting an even number after rolling a single 6-sided die.
Choosing a white marble from a jar of 25 green marbles.
None of the above.

v v v v

There are 4 parents, 3 students and 6 teachers in a room. If a person is
selected at random, what is the probability that it is a teacher or a student?

What is the probability that an Italian newborn is a girl?

1/2? fyou know that women are the 51.3% of the Italian population, does
your guess changes?



based on the Classical approach to probability evaluation

Which of the following events has probability 0?

Choosing an odd number from 1 to 10.

Getting an even number after rolling a single 6-sided die.
Choosing a white marble from a jar of 25 green marbles.
None of the above.

v v v v

There are 4 parents, 3 students and 6 teachers in a room. If a person is
selected at random, what is the probability that it is a teacher or a student?

What is the probability that an Italian newborn is a girl?

1/2? If you know that women are the 51.3% of the Italian population, does
your guess changes?



Conditional Probability

Probability is a measure of uncertainty on the result of a random
experiment, so any additional information on the outcome affects it.

Let A and B be two events, if we know that B happened, we can update the
probability of A as follows:

P(ANB)

PAIB) = =55

Example: if we know that a die returned an even number, then the
probability of observing a 3 is 0.



absence of relation between events

If knowing an event B does not affect our probability evaluation of A4, then
we say that A and B are independent:

P(A|B) = P(A)

Combining this to the definition of conditional probability we can derive the
factorization criterion, to assess if two events are independent:

(AN B)

P(A|B) = PP(B) = P(A) <> P(ANB)=P(A)P(B)

CAVEAT: The fact that two events are independent does not mean they are
disjoint, and actually this is almost never the case. In fact for
P(ANB) = P(D) =0= P(A)P(B), either A or B must have probability 0.



your turn

The blue M&M was introduced in 1995. Before then, the color mix in a bag of
plain M&Ms was 30% Brown, 20% Yellow, 20% Red, 10% Green, 10% Orange
and the rest was Tan.

Starting from 1995, the color mix is 24% Blue, 16% Orange, 14% Yellow, 13%
Red, 13% Brown and the rest is Green.

Tullia is still jealously preserving M&Ms bags from before 1995. She is about
to give her friend Carlo two M&M candies, choosing one at random from a
fresh package and the other one at random from a bag produced in 1994.

> Determine the probability of selecting a tan M&M from the 1994 bag.
> Determine the probability of selecting a green M&M from the fresh bag.
> Determine the probability that none of the M&Ms selected is blue.
> Determine the probability that Tullia gives Carlo two green M&Ms.



Exercise pt i

> Tullia gives Carlo a yellow and a green M&M. In order not to get sick, he
should not eat the one taken from the 1994 bag. What is the probability
that she is trying to Poison her friend with a yellow M&M taken from
the 1994 bag?

you may want to check Bayes Theorem for this



Random variable

Typically we are not interested in the single outcome itself or in the events
but in a function of them.

A random variable is any function from the sample space to the real
numbers.

Examples:

> toss a coin three times and count the number of tails
> roll two dice and sum the values of the faces

NB A random variable is a number: we can do all sorts of operations with it!



how to characterize it

> X random variable: the random function (before it is observed!)
> x realization of the random variable: the number we get after we
observe the result of the random experiment

> X support of the random variable: all the possible values assumed by
X

Example:

> toss a three coins. X is the number of tails
x ={0,1,2,3}

Probability statement on a random variable can be derived from the
probability on the basic events!



Distribution of a random variable

> Toss a coint three times. X is the random variable representing the

number of Tails
w Pw) | z z | p,=P(X=2)
HHH | 1/8 | o o 1/8x1=1/8
THH | 1/8 | 1 1 1/8x3=3/8
HTH | 1/8 | 1 2 1/8x3=3/8
HHT | 1/8 | 1 3 1/8x1=1/8
TTH 1/8 | 2
THT 1/8 2
HTT | 1/8 | 2
TTT | 1/8 | 3

The distribution of a random variable p, is just a convenient way of
summarizing single outcomes probabilities.



Two dice are rolled:

>
>
>
>

Construct the sample space. How many outcomes are there?
Find the probability of rolling a sum of 7.

Find the probability of getting a total of at least 10.

Find the probability of getting a odd number as the sum.




Distribution of a Discrete Random Variable:

When X is countable, the random variable X is said to be discrete, and it is
characterized by:

> Probability mass distribution

p,=PX=x) Veel

> Cumulative distribution function

Fy(z)=P(X <ux) ZP :Zpy

y<z y<zx

Examples:

> What is the probability of exactly 1 head? P(X =1) =p, =3/8
> What is the probability of at most two heads?
P(X<2)=Fx(2)=po+p1+p=7/8



Remember: statements such as X = 1 or X < 2 are events, we can use
intersection, union, complement and all the operations we have seen
before!

Examples:
> What is the probability of note getting 1 head?
PX#+£1)=P(X=1))=1-P(X=1)=5/8
> What is the probability of at least 2 heads?
PX>22)=1-P(X<1)=1-Fx(1)=1—(py+p1) =4/8
> What is the probability of o or 2 heads? (disjoint events!)

P(X=2UX=0)=P(X =2)+P(X =0)=p, +p,=4/8



Properties

Probability mass distribution Cumulative distribution function
> pp 20 > 0< Flz) <1
> p, <1 > Fis non-decreasing

>y b =1 > F'is right continuous
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Let X be a discrete random variable with the following cumulative

distribution function

0 if
1/5 if

F =
@ =13/ if
1 if

r<l1
1<zx<4
4<xr<6
xr>6

> compute the corresponding probability mass function

> compute the following probabilities:

P(X=6)
P(X=5)
P(2<X<5.5)
P(osX<4)



Distribution of a Continuous Random Variable:

When X is not countable, the random variable X is said to be continuous.

If ¥ is not countable, it is not possible to put mass on any value z € I,
meaning that
P(X=x)=0 VreX

> Cumulative distribution function

Fylz) = P(X <) = [ Fe(t)dt Veeld

> Probability density distribution

fx(x) = %x(z) Ve elX



Properties

Probability density function Cumulative distribution function
> fx(x) >0 »0< F(z) <1
> fx(x) needs not be <1 > Fis non-decreasing

> [ fx(w)da =1 > Fis right continuous




Let X be a continuous random variable with the following probability
distribution

cx?(l—z) if 0<a<1
i) = {0 if otherwise
> determine ¢ so that f(z) is a valid pdf
> compute P(X = 0.5)
> compute P(X > 0.5)



Comparison

> X discrete rv with pmfp,

> P(X € A) :erApI
if A={x,...,2,} then
P(Xe A= pr

> X continuous rv with pdf fy(z)
» P(X € A) = [, fx(x)dz

if A= [a,b] then

b
P(X € A) = / Fy(@)dz

= Fy(b) — Fx(a)



Comparison

A={zy,...,z;} A = [a,b]
P(XeA) =" p, P(X € A) = Fx(b) — Fx(a)

g4




The distribution of a random variables provides fully characterize it, but it
may not be “immediate” to gain insights from it.

Once more we need to summarize the information contained in the
distribution.
Candidates:

> Mode: the value that is “more likely”, i.e. the value that maximises the
density

> Median: the value that “splits in half” the distribution, i.e. m s.t.

P(X<m)=P(X>m)=0.5



king of all summaries

The Mean or Expected Value is the “average” of the elements in the support
of X, weighted by the probability of each outcome.

The expected value gives a rough idea of what to expect for the average of
the observed values in a large repetition of the random experiment (not
what we’ll observe in a single observation!)

X discrete rv. with p.m.f. p, X continuous rv. with p.d.f. fy(z)
E[X] = Z TPy E[X] = / zfx(x)dz
zeX J_so

WATCH OUT The expected value may not exist!



Properties

> E[c] = ¢ for any constant ¢
E[E[X]] = E[X]

> ElaX +b] = aE[X] +0
> E[X — E[X]] =0
> E[X +Y] = E[X] + E[Y] =0

The Law of the Lazy Statistician Given a continuous (respectively discrete)
random variable X whose expectation exsists, and a function g, then

Elg(X)] = / 9(x) fx ()dz ([E[Q(X)] = Zg(w)pz>




another way of summarizing a distribution

The expected value gives an idea about the center of the distribution, but
does not account for the dispersion of the values

Example:

> Given two investment strategies with the same expected payout, we
would like to choose the one with less variability

(Bad) Candidates:

> average deviation from the mean E[X — E[X]] (not informative)

> average absolute deviation from the mean E|X — E[X]]|
(computationally challenging)



The variance of a random variable X
V[X] = E[(X — E[X])?]

tells us of how much the variable oscillates around the mean.

X discrete rv. with p.m.f. p, X continuous rv. with p.d.f. fy(z)

VIX] =) (e — E[X])?p, V[X] = /_oo(x — E[X])2fx(z)dx



of the variance

> the variance is always non-negative, V[ X] > 0 and is 0 only when X is
constant

> the square root of the variance sd(X) = /V[X] is called standard

deviation. Roughly, describes how far values of the random variable
fall, on the average, from the expected value of the distribution

> the variance is insensitive to the location of the distribution but
depends only on its scale

VX + b = a®V[X]

> a computation-frendlier alternative definition of the variance is:

VIX] = E[X?] - (E[X])?



Let X be a discrete random variable with the following probability

distribution
0 if
1/5 if
F(z) =
@ =950 if
1 if

r <1
1<x<4
4<x<6
r>6

> compute its expected value and variance



Let X be a continuous random variable with the following probability
distribution

) = {cxz(l—m) if 0<z<1

0 if otherwise

> compute its expected value and variance



Covariance

If we have 2 random variables, the covariance gives us a measure of
association between them.

Cov(X,Y) =E[(X — EX)(Y — EY))
= E[XY]— EXEY

> The sign of Cov(X,Y') informs on the naturer of the association
> The higher |Cov(X,Y)|, the stronger the association

Remark V(X + Y] = V[X] + V[Y] + 2Cov(X,Y)



Independence of Random Variables

Two random variables X,Y are independent if

Fyy(zy)=PX<znY <y)
=P(X <a)P(Y <y)
= Fx()Fy(y) Vz,y €R

Intuitively if X and Y are independent, the value of one does not affect the
value of the other.

Remark: if X, ..., X, are independent then
> Pz, = Pzy 0 Py,

> fX1 ..... X, (T1seey ) = fx1 (x1) - fx, ()

n



Independence of Random Variables

Factorization Criterion

FX,Y(-Tay) = Fy(z)Fy(y) Vz,y € R

If X and Y are independent then E[XY] = EXEY

As a consequence

Cov(X,Y) = E[XY] — EXEY =0

WATCH OUT: the converse is not true! If Cov(X,Y) = 0, the two random
variables may still be associated.



Let X and Y be two random variables with marginal distribution functions

0 if z<0
F -
x(@) {1 —exp(—z) if >0

0 if y<0
F —
v(®) {1—exp<—y> if >0

Determine if X and Y are indipendent given the joint distribution function:

0 if <0 or y<o0

r —
xy(@y) {1 —exp(—z) —exp(—y) +exp(—x—y) if >0 andy>0



Famous random variables

Typically you do not have to derive yourself the distribution function for a
random variable.

You can choose from a catalog of famous random variable, whose
distribution are know and well investigated, which one is more adequate to
the phenomenon of interest.



Discrete Random Variables

Probability mass distribution Cumulative distribution function
> p, >0 > 0< F(z) <1
> p, <1 > F'is non-decreasing

>y b =1 > Fis right continuous




the intuition behind it

> The discrete uniform distribution is a symmetric probability
distribution whereby a finite number of values are equally likely to be
observed.

> If the support of X (i.e. the set of values that X can take) has size K,
the probability of each of its elements is 1/K.

> The discrete uniform distribution itself is inherently non-parametric. It
is convenient, however, to represent its values as all integers in an
interval [a,b], so that a and b become the main parameters of the
distribution.



Uniform

X ~Unif{zy, ..., x5} For today we assume a = 2y < < zp =b.
— ) = lz] —a+1

|




X ~ Uniform(a,b)

lz] —a+1
= < = -

X € la,b] =[a,a+k,a+2k,....,b] where b=a+ (n—1)k

1 1
EX] =) ap, = vo=— a+lk=
T 1=0 1=0

1 = k(n—1)n

—E[na+k;l]—a+ o

_ +k(n—1) +b—a

=aq B = 5 =
a+b




X ~ Uniform(a,b)

|z] —a+1
Pa X<z b—a+1

Flx?) = pr“_ a—|—12 =

1 (b +b)(2b+1)—(a®>—a)2a—1)
_b—a—|—1( 6 )=
)

1 ((2b3+3b2+b)—(2a3—3a2+a)
T b—a+1 6




X ~ Uniform(a,b)

B |k —a+1
P =PX =)=

VIX] = E[X?] - E[X]? = E[X?] — (%)

1 ((2b3+3b2+b)—(2a3—3a2+a))_(a+b)2_
b—a+1 6 2

VIX] =

_(b—a+1)?—1
- 12



Throw a fair die. The random variable X describing the value of the face up
follows a uniform discrete distribution.

> X ~ Unif{1,6}

s{a=2, =12y =2,24 =3,y =4, 25 =5, = 6 = b}

> p, =P(X =x2)=1/6foreveryz € {1,2,3,4,5,6}



A die is rolled.
> List the possible outcomes in the sample space.
> What is the probabilty of getting a number which is even?
> What is the probabilty of getting a number which is greater than 4?

> What is the probabilty of getting a number which is less than 3? What is
its complement?

> If two dice are thrown and their values added, is the resulting
distribution still a discrete uniform?



Bernoulli

Assume your random experiment has two possible outcomes (typically
addressed as Success and Failure).

The random variable representing the result of the experiment X can take
either 0 or 1 as value.

Since Success/Failure are the only two possible outcomes we have that:

> Probaility of success: P(X =1) =p
> Probability of failure: P(X =0) =1—p.

Example: Support to a political party, Result of an exam (pass/fail)



Bernoulli

X ~ Bernoulli(p)

_J 0 with probability 1 — p
~ |1 with probability p




X ~ Bernoulli(p)
> Compute E[X] and V[X]



Expected Values

X ~ Bernoulli(p)

E[X] =) ap,

=0Xpy+1xp;
=0x(1—p)+1lxp=p



Remember the quick formula to compute the variance

VIX] = E[X?] — E[X]* = E[X?] —p?

Compute the E[X?], the 2nd moment of the distribution:
E[X?] =) a%p,

=0xpy+1xp;
=0x(1—=p)+1xp=p

V[X] = E[X2] — E[X]?
=p—p°
=p(l—p)



Toy Example

Let X be the random variable representing the price behavior of Microsoft
Stock in the next month.

> X = 1if the price next month of Microsoft stock goes up
> X = 0if the price goes down (assuming it cannot stay the same).

The price will go up with probability p = 3/5. Then X follows a Bernoulli
distribution with parameter p = 3/5.

. 0 with probability 2/5
X~B I =
ernoulli(s/s) {1 with probability 3/5



Binomial

Typically we are interested in the outcome of a Bernoulli experiment on
many of random experiment, rather than just one.

Example: Flip a coin 3 times, ask 10 people about their political preferences

The random variable of interest X then becomes the “number of successes”:
n
X=3y,
=1

where Y;, ..., Y, are independent Bernoulli random variables with
parameter p



conditions under which it may be used

> Each of n trials has two possible outcomes. The outcome of interest is
called a success and the other outcome is called a failure.

> Each trial has the same probability of a success. This is denoted by p, so
the probability of a success is p and the probability of a failure is 1 — p.

> The n trials are independent. That is, the result for one trial does not
depend on the results of other trials.

Then the random variable X representing the number of successes in the n
trials follows a Binomial distribution with parameters n and p.



X ~ Binomial(n, p)

px(@) = (C)pr @ —py Fx(x) =" px(k)

k<z

. ' I | ‘ | I ' . . .
" T T T T !
o 2 . 3 ® 1



X ~ Binomial(n, p)

px(@) = (C)pr @ —py Fx(x) =" px(k)

k<z




X ~ Binomial(n, p)

px(@) = (C)pr @ —py Fx(x) =" px(k)

k<z

I ‘ ‘ | I L
i . . . . )
o 2 . o o l



z=1
=EZ=1($_1)!(” iP (1—p)

X oan-—1) ; e
ES 2 zl(n_z_l)l +1(1 p) 1



Towards the Variance

[E[XZ] _ Z 9721795 _ 72 (;L)pz(l _p)n—x

1 10

n! .
RPN A
n—1
= (Z+ 1)%1)##1(1 _p)n—z—l
—0 : :

n—1 o ne1 .
= NP[Z z(n ] 1)pz(1 —p)lr g Z ( ) 1)pz(1 —p)n1—7]
z=0 pomrd

=np(n—1)p+np



V[X] = E[X?] - E[X]? = E[X?] — (np)®

V[X] = np(n —1)p + np — (np)?
n%p? —np? +np =

=np(l —p)



Consider X ~ Binomial(n, p) as the sum of n independent and identically
distributed Bernoulli variables Y;.

Remember if that Y,, ..., Y, ~ Bernoulli(p), E[Y;] = pand V[Y;] = p(1 — p)
for all Y;, which is enough to prove

F[X] =€ {Zy} SSTEVI= Y p =

i=1 i=1

Moreover, since Y;, ..., Y, are independent, we have that

VIX] =V [ 3 1@] VY] =3 p(1 — p) = np(1 —p)
=1 i=1

n
i=1



Flip a fair coin 3 times. The random variable X representing the number of
heads follows a Binomial distribution.

> The Bernoulli trial is the coin flip, hence n = 3
> The coin is fair, hence p = 1/2
> The support of X is {0,1,2,3}

> P(X>2)=1—Fx(1) =1— (px(0) +px(1)) = 0.5
since px(0) = (3)(0.5)® = 0.125 and py (1) = ()(0.5)'(0.5)2 = 0.375



your turn!

A quiz in statistics course has four multiple-choice questions, each with five
possible answers. A student needs three or more correct answers to pass.
Allison has not studied for the quiz, so she answer completely at random to
all the questions.

> Find the probability she lucks out and answers all four questions
correctly.
> Find the probability that she passes the quiz.

Each newborn baby has a probability of approximately 0.49 of being female
and 0.51 of being male. For a family of four children, let X = number of
children who are girls.

> Explain why the Binomial represent the phenomenon and identify its
parameters.

> Compute the mean and the variance of X.

> Find the probability that the family has two girls and two boys.



The Poisson distribution is called the distribution of rare events.

It is used to model counts, i.e. the number of events in a given interval of
time (or space).

Examples:

# of clients calling a call-center
# of defects in a square meter of a manufactured good
# of patients arriving to the emergency hospital in the last hour

>
>
>
> # of earthquakes in a given interval of time



X ~ Poisson(}\)

05

04

i

s 0 s

2

10
)

08
L

0z
.

Fx(z) = pr(k)

k<z

—lamida =







x =0
o0 )\ze—A
] z+1 ,—X
2=0 z
= Azer & Ag)e?
- )\(Z i 2! * 2! )=
z=0 z=0

V[X] = E[X?] — E[X]? = E[X?] — A

VIX]=A2+A—AZ=2)



Toy Example

Your instagram account receives on average 10 likes per day. In order to
gain more information you are interested in modeling the distribution of

X ="“number of likes per day”.

> X ~ Poisson(\), with A = 10

> Probability of having a bad day? P(X = 3) = 19" = 0.0076



The average number of homes sold by the Acme Realty company is 2 homes
per day. What is the probability that exactly 3 homes will be sold tomorrow?

Suppose the average number of lions seen on a 1-day safari is 5. What is the
probability that tourists will see fewer than 4 lions on the next 1-day safari?




Continuous Distributions:

Probability density function Cumulative distribution function
> fxl@) 20 »0< Flr) <1
> fx(x) needs not be <1 > Fis non-decreasing

> [T fx(@)de =1 > Fis right continuous




Continuous Uniform Distribution

The Continuous Uniform Distribution can be used to model phenomena that

> A random variable X is uniformly distributed between a and b, if X

takes value in any interval of a given size with equal probability.
Discrete case: it takes any value in the support with equal probability

> the probability of X being in an interval, is proportional to the length

of the interval.
Discrete case: probability of a set is proportional to its size

Example: the arrival of the bus 20 between the moment you get to the bus
stop and midnight.



Continuous Uniform Distribution

X ~ Unif(a, b)




Uniform c.d.f

> In the case of a Uniform random variable there is a closed form (& easy
to derive) expression for the c.d.f.:

> Itis trivial to see that the probability of a set only depends on its size:

P(X € [ay,b]) = Fx(by) — Fx(ay)

_b—a a—a

b—a b—a
_bi—ay
T b—a



Mean and Expected Value

> Expected Value of X ~ Unif(a,b)

a+b

ElX) = =5

Since it is a location/center summary, the expected value depends on the
specific values the random variable assumes.

> Variance of X ~ Unif(a,b)

(b—a)?

e T

Since it is a scale/dispersion summary, the variance depends only on the
size of the support.



As the name suggest, a pay-per-kilo clothes shop (something like Pifebo)
charges the customer based on the weight of what they are buying.

Empirical evidence suggest that a client typically buys between 200 and 800
gr of clothes.

> Probability Density Function:

L 900 < z < 800
) = { 600 ==
Ix(@) {0 otherwise




> What is the average amount of clothes bought?

> What is its variance?

> What is the probability that a customer buys less than 300 gr of clothes?



Exponential Distribution

A random variable X is said to have an Exponential Distribution with
parameter A > 0, if its probability distribution can be written as

Fx(x) = Ae™® z>0

The intuition behind an Exponential random variable is that the larger is a
value, the less likely it is.

The Exponential is typically used to model time until some specific event
occurs, and its parameter ) affects the mean time between events.

Examples: the amount of time until an earthquake occurs, the amount of
money customers spend in one trip to the supermarket, the value of the
change that you have in your pocket



Exponential distribution

Fx(@) = e Fy(w)=1—e




Exponential distribution

Fy(z)=1—e"




Expected Value and Variance

X ~Exp(\), A>0

VIX] = 5




Normal Distribution

The Normal or Gaussian Distribution is the queen of the random variables,
and this is because:

> it represents many natural and economic phenomena
> it approximates other distributions
> it is key to inference in sampling

A random variable X ~ Norm(u, o?) has an interpretable parametrization:

w=E[X] 0% = V[X]



Normal Distribution

X ~ Norm(u,o?), o2>0,ueR

I (O T
fx(@) = e 2z FX(:B):/ \/2_26_2;2@_“)2(#
o V270




Normal Distribution




Normal Distribution

X ~ Norm(u,o?), a2 >0

2

o= [ At
o0




Properties

> a linear transformation of a Normal random variable is still a Normal
random variable:

X ~ Norm(yu,02),ifY =aX +b, where a,b € R

Y ~ Norm(ap + b, a?0?)

> a linear combination of Normal random variables is still a Normal
random variable:

X1,..., X, independent random variables such that X; ~ N(y;,0?) then

n n n
_ 2 2
Y= 30X, ~ Norm (Zu S ai) ,
i= = i=



Standard Normal

When ;= 0 and o2 = 1, the random variable Norm(0, 1) is called a standard
Normal and it is denoted by Z.

Every Normal distribution can be turn into a standard Normal by means of
standardization

If X ~ Norm(u,o?), then
X —
Z = TM ~ Norm(0,1)

This is just a linear tranformation of a Normal, so it is easy to show:




Tables of a standard Normal

Someone computed for you all the values of the cumulative distribution
function of a Standard Normal and store them into tables.

Cumulative
probability

Cumulative probability for z is the area under
z the standard normal curve to the left of z

Table A Standard Normal Cumulative Probabilities (continued)

00 5000 .5040 5080 5120 5160 5199 5239 5279 5319 5359
0.1 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753
02 5793 5832 5871 5910 5948 5987 6026  .6064 6103  .6141
03 6179 6217 6255 6293 6331 6368 6406 .6443 6480 6517
04 6554 6591 6628  .6664 6700 6736 6772 6808 6844 6879

0.6 7257 7291 7324 7357 7389 7422 7454 7486 7517 7549



Toy Example

The time (in minutes) you need to solve the exercises | gave you, X, is
Normally distributed with mean . = 5 and standard deviation o = 10.

Formally X ~ Norm(5, (10)2).

When | prepared this exercise at home, yesterday, it took me 6.2 minutes to
solve it.

? What is the probability to find someone faster than me, i.e. P(X < 6.2)

<
o ~— 10

= P(Z <0.12) = 0.5478

P(XS6.2)=P(X_:“ 6.2—5)



The length of Black Mirror episodes (in minutes), is known to be Normally
distributed with mean p = 50 and standard deviation o = 5.

A new episode just got out:
> determine the probability that its length is exactly 50 minutes;
> determine the probability that its length is between 48 and 51 minutes;

A whole new season made of 8 episode is scheduled to be released next fall:

> determine the probability distribution of the length (in minutes) of the
whole season;

> determine the expected length (in hours) of the whole season and its
variance.



Central Limit Theorem

Suppose you have X, ..., X, random variables independent and with the
same distribution.

Identical distribution implies that all the variables have the same expected
value = E[X;] and variance o = V[X,]

The average of this collection is also a random variable

~lyoy,

i=1

3|'—‘

Even if we don't know the distribution of X, the Central Limit Theory tell us
thatasn — oo




the consequences

> if X;,..., X, are already Normals, then the result of the CLT is exact,
that is, it works for any n

> even if we have no idea of what distribution generated the collection
X, ..., X, we can always (albeith asymptotically) derive a distribution
for its mean

> the CLT is very useful in statistical inference. We typically consider our
data as realization of a collection of random variables X, ..., X,
whose distribution we do not know; it is crucial to have a summary
whose distribution we know in order to draw inferential conclusions.



