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Inference vs Probability

> Probability starts from the population, which is described by the
means of a probability distribution function, and predicts what
happens in a sample extracted from it.

> Inference starts from a sample and describes the observed data with
the aim of inferring relevant information on the population.



What is Inference?

> Estimate: recover some parameter explaining the phenomenon that
generates the data

point estimate: a single number that is our best guess for the parameter.

interval estimate: an interval of numbers that is believed to contain the
actual value of the parameter.

> Hypothesis testing: using data to validate certain statements or
predictions



Random sample

A random sample is a collection of random variables X;,..., X, ~ fx x ,
that are:

> independent

> identically distributed

As a consequence

An observed sample (x, ..., z,) is a realization of the random sample.



Toy Example

Let X4, ..., X,, i.i.d. (independente identically distributed) from a
Poisson(\).

The sampling distribution f _  can be derived as follows:




short glossary of estimation tools

> Parameter: numerical characteristic of the population that we are
trying to recover (hence typically unknown)
Examples: X in a Poisson

> Statistics: numerical function of the sample that does not directly
depend on any unknown parameter
Example: S(X, ..., X,,) = X(,) — X()

> Estimator: a statistic used to estimate the population parameter
Example: T(X4, ..., X,,) = X is an estimator for u

> Estimate: the value of an estimator corresponding to an observed
sample:
Example: T'(zy, ..., x,) = & is an estimate corresponding to X



walking our way through it with an example

In order to assess the 1Q of Torvergata students, we interview 10 people,
and we use the sample mean X as an estimator of the population mean p.

> observed sample: z = (z; = 95,2, = 104, 25 = 104, 2, = 95, x5 =
88,14 =126, 2, = 77,24 = 112,29 = 111, 21, = 105)

> estimate: T(zy,...,z,) =& = 101.7

n

CAVEAT: if we draw another sample from the same population, we will
observe different results:

> 2-nd observed sample: 2’ = (123,119,94,116,106,91,88,107,91,103)

> estimate: T(xy,...,x,) = 2’ = 103.8

Since it is a function of a random object, an estimator is a random variable,
and the estimates are its realizations.



Comments on estimators

There is no “universal estimator”, but it must be chosen according to:

> the distribution of the data

we wouldn’t try to estimate the max of a discrete variable with a
continuous value

> the parameter of interest

we wouldn’t try to estimate the mean and the variance of a Normal
distribution with the same estimator

Example:

> parameter of interest: mean of a Normal population
> estimator: T(Xy, ..., X,,) = X,



An easy case

If the parameter of interest is the expected value of the population E[X],
then the obvious candidate is the sample mean

X _ E?:l X’L
n
Good Properties:

> for the Law of Large Numbers we know that X — E[X] when n — oo

> the Central Limit Theorem provides us with an approximate
distribution for X



The sample mean

E[X] = E[X]

> on average it gives us the right value:

> as n grows, we are increasingly confindent in our estimate



when we have unconventional densities

The aim of the estimator is to try to recover the distribution that generated
the data.

The are several automatic ways to derive an estimator, depending on how
to use the data to recover the generating distribution.

> Methods of Moments:
find a distribution that has some features of the observed sample

> Maximum Likelihood:
find a distribution that maximises the probability of observing the sample
at hand



Methods of Moments

The core idea is to equate sample moments to population moments, i.e.

EX) =430, X,

E[X?) =& 320, X7
3] — n 3

EX* =220, X

Example:
Consider a random sample X, ..., X, ~ Unif(0, 8), for which E[X] = 6/2.
The MOM estimator is found by equating E[X] = 6/2 with X = 1 X

0/2=X = 0y0m =2X



Let X,,..., X,, ~ Unif(a,b), compute the MOM estimator for a and b.

Remember that

(b—a)®

X ~Unif(a,b) = E[X] 5

V[X] =

_b+ta
)



the basic intuition

Let X ~ Binomial(n, p), the probability mass function
P(X =z)=("p"(1 —p)"*, gives us the probability of observing a value z.

Now assume that we know n = 10 and we observe z = 8

> ifp =05, P(X =8) = (1)(0.5)%(0.5)> = 0.043

> ifp =07, P(X =8) = (1)(0.7)%(0.3)> = 0.233
For z = 8, the parameter p = 0.7 seems to be more likely than p = 0.5.
When we fix the realization = and we consider it a function of the

parameter p, the p.m.f (7)p*(1 —p)"~* gives us a measure of how
compatible x is with the value p. This is called the Likelihood of p.

NB The Likelihood tells us how plausible a value of the parameter is, but it
does not measure its probability.



The Maximum Likelihood Estimator (MLE) is the value of the parameter that
maximises the Likelihood:

g = argmazL(0;x,, ..., x,) = argmazl(0;z,, ..., x,)

Operationally the steps to find the MLE are:

1. Compute the derivative of the log-likelihood and equate it to 0:
dl(0;zq ..., x,)/d0 =0

2. Isolate ¢ to find the candidate for the MLE (i.e. the critical point)

3. Check the sign of d21(0;z; ..., z,,)/d6* in the candidate 0 to verify that
this is not a min or a saddle



Remember that if X, ..., X, random sample, with X; ~ Poisson()\) then:

> joint distribution

1 n
DX, X, (T T3 A) = = eTMANZ i T
! Hi:1 x’L!
> Likelihood
L(Axq, ., x,) = ! eANE L T
» 1y yn H:;ll'z'

> log-Likelihood

z;log(A)

n

1
(N zq,...,x,) = log (W) —nA+
i=1 """ i=1



1. Compute the derivative of [(\; 24, ..., x,,) and equate it to 0:
dl( Xz, .x,) Iv~
B S VLl

2. Isolate X to get the MLE estimate:

CAVEAT Even if py v (2q,...,7,;)) denotes a discrete distribution, it is a
continuous function in ), hence we can compute derivatives to find the
max.



The multiplicative factor depending on the data but not on the parameter

T o, disappeared when we computed the derivative. This is always true:
i=1"1"

> if L(\;x) = h(x)g(x, 0), then I(\;z) = log(h(z)) + log(g(x, 6))

> the derivative of log(h(x)) does not depend on 6

dl(; z) _ dlog(h(zx)) N dlog(g(x,0)) _ dlog(g(x,0))
do do do do

The function g(z, 0) is called the core of the likelihood and it contains all
the information we need from the data.

Since we can replace L with g without loss of information, when we talk
about Likelihood we actually talk about its core.



Let X,,..., X,, be arandom sample (i.i.d.), where each X, has the following
density function

Fx(z;0) = (0 + 1)z’ z € (0,1),0>—1
> Compute the joint distribution fy v (2,...,2,)

> Find the likelihood distribution
> Determine the Maximum Likelihood estimator for



Evaluating Point estimators

> An estimator 7T for a parameter 6, is said to be unbiased if E[T] = 6.
a “good” estimator is on average close to the real value of the parameter
of interest

> An estimator T is precise if its variance V(T') is small.
a “good” estimator is always on target

The Mean Squared Error (MSE) evaluates the performance of the estimator
combining these two desiderata:

MSE(T) = V(T) + Bias(T)?



> if E[T] = 6 we say that the estimator is unbiased and the MSE reduces
to its variance

Consistency

> the MSE can be alternatively defined as
MSE(T) = E[(T — 6)%]

> when
lim,_,ooc MSE(T) =0

we have that as n grows T becomes closer and closer to real value of
the parameter 6. This important property is called consistency, and
reassures us that adding more observations improves the
performances of the estimator



Let X,, ..., X,, be a random sample from a Normal distribution N(u, 1?).
Consider the following estimators for the parameter p:

X i+ X+ + X X
T1<X17 "'7Xn) = : i 2n+_ 1 u - 7’"
X
T2(X17 1Xn) = %

> Determine the bias of the two estimators.
> Determine the Mean Square Error of the two estimators
> Which of the two estimators is more efficient?



A interval estimator for a parameter ¢ is a random interval
[L(Xy,...,X,),U(X,, ..., X,,)], containing the most believable values for the
parameter.

Intuitively, it is very difficult to predict the exact value of the unknown
parameter (if T'is a continuous random variable, this is even impossible, as
by definition P(T = 6) = 0), hence is more reasonable to ask for a range of
possible parameters.

In addition a set of plausible values is more informative on the
phenomenon than just a single guess.



A confidence interval of level 1 — o is a random interval [L, U], where L and
U are two statistics, such that

POE[LU)=1-a

The confidence level (1 — ) is probability that the interval contains the
true value of the parameter 6, before the sample is observed. Typically this
value is chosen to be high (0.95 or 0.99).

Typically a confidence interval is built using the formula
T+ err

where T is the point estimator for § and err measures how accurate the
point estimate is and depends on the level of confidence as well as V[T].



Confidence

BE CAREFUL: once we observe the sample, and we have an estimate of the
confidence interval [/, u], the probability that the parameter lies in this
interval is either 0 or 1.

However, remembering the definition of probability as the limit of the
relative frequency of an event, we can be confident that if we build a large
number of confidence intervals, the parameter will be contained in the 95%
of them.



Building a Confidence Interval

Let X4, ..., X,, be an iid random sample from a Norm(u, o%) where o2 is
known. Let us build a confidence interval of level 1 — a

> Take X as a point estimator of the parameter of interest

> Remember that B
X—up
o//n

~ Norm(0, 1)

so that _
X—p
P(sun s Gk <) =170

Rearranging the terms we have the confidence interval X + o/\Vnza



a very boring one

When a shipment of coal is traded, a number of its properties should be
known accurately, because the value of the shipment is determined by
them. An important example is the so-called gross calorific value, which
characterizes the heat content and is a numerical value in megajoules per
kilogram (M}/kg).

As there is uncertainty related to the measurement procedure, the
measurement are random, and known to be normal, with a standard
deviation of about 0.1 MJ/kg. For a shipment of coal, 23 measurements are
given with sample mean xbar = 23.788

? compute the confifence level for i at a confidence level 1 — a = 0.95
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Hypothesis Testing

The main goal of statistical testing is to check whether the data support

certain statements (hypothesis), usually expressed in terms of population
parameters for variables measured in the study.

Usually, an hypothesis on the parameter ¢ is formalized as follows:

> 0 = 6, punctual hypothesis
> 0> 6, or 0 < 0, one-sided hypothesis
> 0 # 6, two-sided hypothesis



In a hypothesis test we compare two alternative hypothesis H, and H;:

> The Null Hypothesis (H,) is the hypothesis that is held to be true
unless sufficient evidence to the contrary is obtained.

> The Alternative Hypothesis (H,) represent the new theory we would
like to test.

Example: We want to test whether an astrologer can correctly predict
which of 3 personalities charts applies to a person.

> Hy:p=1/3
the astrologer doesn’t have any predictive power (the probability of
guessing the personality is 1/3)

S Hyip>1/3
the astrologer does have predictive power



Innocent until proven guilty

H, is true H, is false

Accept H,, o} Type Il Error
Reject H, Type | Error )

> If we want to completely avoid Type Il Error we should always Reject

H(]
> If we want to completely avoid Type | Error we should always Accept H,,

It is impossible to simultaneously avoid both: which one is more
important?

As H, represent the current condition, we would like to subvert it only
when the data provide strong evidence against it



Testing procedure:

How to solve a test H, = 6 < 6, versus H, =0 > 6,

1.

Choose a level « of significance (i.e. the probability of Type I Error),
typically o = 0.05

. Choose a test statistic 7, i.e. a statistic that describes how far that

point estimate falls from the parameter value given in the null
hypothesis

. Given an observed sample (z4, ..., ,), compute the t = T'(z4, ..., z,,)

. Compute the p-value, P(T > t|H,) = p, a measure of how compatibles

the data are with H,

. If p < o, reject Hy, otherwise do not reject it



