
INLA
as much as you can learn in 90 minutes

Dipartimento di Scienze Statistiche

Tullia Padellini
tulliapadellini.github.io �

tullia.padellini@uniroma1.it �

Roma – 11 December 2019

INLA
what are we doing here today

E�cient (i.e. fast) and accurate computational tool for Bayesian Statistics.

• INLA - the method

a deterministic algorithm to approximate the posterior distribution

• R-INLA - the implementation

an R package to perform fit a large class of models in a Bayesian way

INLA -Integrated Nested Laplace Aproximation
you can have the cake and eat it too

• it’s fast
relies on numerical approximation and sparse matrices

• it’s accurate
empirically shows better performances than MCMC

• it’s flexible
can be used to fit any model formulated as a GAN

• it is (relatively) easy to use
it’s implemented as an R package

Motivation
isn’t MCMC good enough?

Do we actually need yet another way to implement Bayesian Methods?

Yes if we think that MCMC methods are

• cumbersome to write

• slow

And this is very much true when dealing with Spatial Models

INLA vs MCMC take I
MCMC are cumbersome to write

INLA vs MCMC take II
MCMC are slow

INLA

INLA models
basically most of the models you have already seen

y |◊, Â ≥ fi(y ; ◊, Â) Likelihood

◊|Â ≥ fi(◊; Â) Latent structure

Â ≥ fi(Â) Hyperprior

INLA provides numerical approximations of the marginal posteriors

fi(◊i |y) fi(Âj |y)

Linear models naturally fall in the INLA framework when we consider

◊ = (—, f1, f2, . . .)

y = k(÷) + ‘ ÷ = x t— +

ÿ

k

fk(zk)

where
q

k fk(zk) can represent random e�ects, splines, anything you like.

INLA models
basically most of the models you have already seen

y |◊, Â ≥ fi(y ; ◊, Â) Likelihood

◊|Â ≥ N(◊; 0, �(Â)) Latent structure

Â ≥ fi(Â) Hyperprior

INLA provides numerical approximations of the marginal posteriors

fi(◊i |y) fi(Âj |y)

Linear models naturally fall in the INLA framework when we consider

◊ = (—, f1, f2, . . .)

y = k(÷) + ‘ ÷ = x t— +

ÿ

k

fk(zk)

where
q

k fk(zk) can represent random e�ects, splines, anything you like.

INLA models
basically most of the models you have already seen

y |◊, Â ≥ fi(y ; ◊, Â) Likelihood

◊|Â ≥ N(◊; 0, �(Â)) Latent structure

Â ≥ fi(Â) Hyperprior

INLA provides numerical approximations of the marginal posteriors

fi(◊i |y) fi(Âj |y)

Linear models naturally fall in the INLA framework when we consider

◊ = (—, f1, f2, . . .)

y = k(÷) + ‘ ÷ = x t— +

ÿ

k

fk(zk)

where
q

k fk(zk) can represent random e�ects, splines, anything you like.

Laplace Approximation
the basic intuition

Laplace approximation is based on the following two key idea:

f (x) = exp[log(f (x))]

g(x) = g(xú
) + g ÕÕ

(xú
)(x ≠ xú

)
2

+ error ¥ g ÕÕ
(xú

)(x ≠ xú
)

2

So that for every density f we have

f (x) ¥ exp[log(f)
ÕÕ
(xú

)(x ≠ xú
)

2
]

Intuitively we can approximate any density f with a Gaussian by:

• matching the mode to the mean of the Gaussian, µ = xú

• setting the variance by looking at the curvaure at the mode

‡ = ≠1/ log(f)
ÕÕ
(xú

)

Laplace Approximation
the basic intuition

Laplace approximation is based on the following two key idea:

f (x) = exp[log(f (x))]

g(x) = g(xú
) + g ÕÕ

(xú
)(x ≠ xú

)
2

+ error ¥ g ÕÕ
(xú

)(x ≠ xú
)

2

So that for every density f we have

f (x) ¥ exp[log(f)
ÕÕ
(xú

)(x ≠ xú
)

2
]

Intuitively we can approximate any density f with a Gaussian by:

• matching the mode to the mean of the Gaussian, µ = xú

• setting the variance by looking at the curvaure at the mode

‡ = ≠1/ log(f)
ÕÕ
(xú

)

Basic INLA assumptions
most verbose slide of the day

1 Each data point depends on only one of the elements in the latent Gaussian

field ◊, the linear predictor

2 The size of the hyperparameter vector Â is small (say < 15)

3 The latent field ◊, can be large but it is endowed with some conditional

independence (Markov) properties so that the precision matrix �
≠1

(Â) is

sparse.

4 The linear predictor depends linearly on the unknown smooth function of

covariates.

5 The inferential interest lies in the univariate posterior marginals fi(◊i |y) and

fi(Âj |y) rather than in the joint posterior fi(◊, Â|y).

INLA
it’s time for the formulas

fi(◊i |y) =

⁄ ⁄
fi(◊, Â|y)d◊≠i dÂ =

⁄
fi(◊i |Â, y)fi(Â|y)dÂ

• Approximate fi(Â|y) and fi(◊i |Â, y) through Laplace Approximation

• Approximate the integrals over Â with summations over a finite set of

values Â(1), . . . , Â(K)

INLA
it’s time for the formulas

fi(◊i |y) =

⁄ ⁄
fi(◊, Â|y)d◊≠i dÂ =

⁄
fi(◊i |Â, y)fi(Â|y)dÂ

‚fi(◊i |y) =

ÿ

k

‚fi(◊i |Â(k), y)‚fi(Â(k)|y)�
(k)

• Approximate fi(Â|y) and fi(◊i |Â, y) through Laplace Approximation

• Approximate the integrals over Â with summations over a finite set of

values Â(1), . . . , Â(K)

INLA
it’s time for the formulas

fi(◊i |y) =

⁄ ⁄
fi(◊, Â|y)d◊≠i dÂ =

⁄
fi(◊i |Â, y)fi(Â|y)dÂ

‚fi(◊i |y) =

ÿ

k

‚fi(◊i |Â(k), y)‚fi(Â(k)|y)�
(k)

• Approximate fi(Â|y) and fi(◊i |Â, y) through Laplace Approximation

• Approximate the integrals over Â with summations over a finite set of

values Â(1), . . . , Â(K)

Back to our Basic INLA assumptions
still most verbose slide of the day

1 Each data point depends on only one of the elements in the latent Gaussian

field ◊, the linear predictor

2 The size of the hyperparameter vector Â is small (say < 15)

3 The latent field ◊, can be large but it is endowed with some conditional

independence (Markov) properties so that the precision matrix �
≠1

(Â) is

sparse.

4 The linear predictor depends linearly on the unknown smooth function of

covariates.

5 The inferential interest lies in the univariate posterior marginals fi(◊i |y) and

fi(Âj |y) rather than in the joint posterior fi(◊, Â|y).

Posterior of Â
starting from the “deepest” level

fi(Â|y) =
fi(◊, Â|y)

fi(◊|Â, y)
Ã fi(y |◊, Â)fi(◊|Â)fi(Â)

fi(◊|Â, y)

Here comes the Laplace approximation:
Approximate fi(◊|Â, y) with a Gaussian ‚fiG(◊|Â, y) = N(◊; µ, Q≠1

) wherer

• µ is the mode of fi(◊|Â, y)

• ≠Q is the curvature of log[fi(◊|Â, y)] at the mode µ

‚fi(Â|y) =
fi(◊, Â|y)

‚fiG(◊|Â, y)
Ã fi(y |◊, Â)fi(◊|Â)fi(Â)

‚fiG(◊|Â, y)

Posterior of Â
starting from the “deepest” level

fi(Â|y) =
fi(◊, Â|y)

fi(◊|Â, y)
Ã fi(y |◊, Â)fi(◊|Â)fi(Â)

fi(◊|Â, y)

Here comes the Laplace approximation:
Approximate fi(◊|Â, y) with a Gaussian ‚fiG(◊|Â, y) = N(◊; µ, Q≠1

) wherer

• µ is the mode of fi(◊|Â, y)

• ≠Q is the curvature of log[fi(◊|Â, y)] at the mode µ

‚fi(Â|y) =
fi(◊, Â|y)

‚fiG(◊|Â, y)
Ã fi(y |◊, Â)fi(◊|Â)fi(Â)

‚fiG(◊|Â, y)

Posterior of Â
starting from the “deepest” level

fi(Â|y) =
fi(◊, Â|y)

fi(◊|Â, y)
Ã fi(y |◊, Â)fi(◊|Â)fi(Â)

fi(◊|Â, y)

Here comes the Laplace approximation:
Approximate fi(◊|Â, y) with a Gaussian ‚fiG(◊|Â, y) = N(◊; µ, Q≠1

) wherer

• µ is the mode of fi(◊|Â, y)

• ≠Q is the curvature of log[fi(◊|Â, y)] at the mode µ

‚fi(Â|y) =
fi(◊, Â|y)

‚fiG(◊|Â, y)
Ã fi(y |◊, Â)fi(◊|Â)fi(Â)

‚fiG(◊|Â, y)

INLA
and we are back here

fi(◊i |y) =

⁄ ⁄
fi(◊, Â|y)d◊≠i dÂ =

⁄
fi(◊i |Â, y)fi(Â|y)dÂ

• Approximate fi(Â|y) and fi(◊i |Â, y) through Laplace Approximation

• Approximate the integrals over Â with summations over a set of carefully
chosen values Â(1), . . . , Â(K)

‚fi(◊i |y) =

ÿ

k

‚fi(◊i |Â(k), y)‚fi(Â(k)|y)�
(k)

Approximate the Posterior Latent Field
skipping all the details

fi(◊i |Â, y) =
fi(◊|Â, y)

fi(◊≠i |◊i , Â, y)
Ã fi(y |◊, Â)fi(◊|Â)fi(Â)

fi(◊≠i |◊i , Â, y)

• Gaussian: use the marginals of ‚fiG(◊|Â, y) computed before

• Laplace approximation: use a Gaussian approximation for the denominator

fi(◊≠i |◊i , Â, y)

• Simplified Laplace approximation: a mix of the two

Approximate the Posterior Latent Field
skipping all the details

fi(◊i |Â, y) =
fi(◊|Â, y)

fi(◊≠i |◊i , Â, y)
Ã fi(y |◊, Â)fi(◊|Â)fi(Â)

fi(◊≠i |◊i , Â, y)

• Gaussian: use the marginals of ‚fiG(◊|Â, y) computed before

• Laplace approximation: use a Gaussian approximation for the denominator

fi(◊≠i |◊i , Â, y)

• Simplified Laplace approximation: a mix of the two

Putting everything together

1 Explore the space of Â through the approximation ‚fi(Â|y).

Find the mode of ‚fi(Â|y)
Select Â(1), . . . , Â(K) in the area of high density of ‚fi(Â|y)

2 Compute ‚fi(Â(k)|y) for each Â(1), . . . , Â(K)

3 Compute ‚fi(◊i |Â(k), y) for each Â(1), . . . , Â(K)

4 Approximate fi(◊i |y) as

‚fi(◊i |y) =

ÿ

k

‚fi(◊i |Â(k), y)‚fi(Â(k)|y)�
(k)

R-INLA

Installation
it is non-trivial already

INLA is not on CRAN, so you need to specify the repository when you install it:

install.packages("INLA",
repos = "https://inla.r-inla-download.org/R/stable",
dep = TRUE)

INLA gets constant updating - check your version

Setting up the model
building blocks of the inla call

The generic inla call is structured as follows:

inla(formula, data, family)

• formula: formula object that specifies the linear predictor

• data: data frame with the data

• family: string that indicate the likelihood family (default is Gaussian)

Toy Example
most famous dataset ever

The basic formulation of a linear regression model is almost the same as the

canonical lm function:

library(INLA)

data(iris)

mod1 = inla(Petal.Length ~ 1 + Petal.Width, data = iris)

mod1_lm = lm(Petal.Length ~ 1 + Petal.Width, data = iris)

The formula argument
how to specify the model components

The formula object specifies the building blocks of the linear predictor

y = k(÷) + ‘ ÷ = x t— +

ÿ

k

fk(zk)

formula = y ~ x + f(id, model)

The f terms contains random e�ect

• id name of the variable

• model name of the model of the random e�ect corresponding to id

Toy Example
most famous dataset ever

formula = Petal.Length ~ 1 + Petal.Width + f(Species, model = "iid")

mod2= inla(formula, data = iris)

NB: The list of all possible latent models can be found using:

names(inla.models()$latent)
inla.doc("ar1")

The data argument
how to input the observations to ‘inla‘

Data are typically provided through a data.frame (although named list can

also be used).

• If the response is a factor it must be converted to {0, 1} before calling

inla(), as this conversion is not done automatic (as for example in glm()).

• If the covariate is binary it has to be converted to a factor, otherwise inla

will treat it as numeric

• If we wish to predict the response variable for some observations, we need

to specify the response variable of these observations as NA

The family argument
how to specify the likelihood

The family argument is a string defining the likelihood of our model.

• each observation can have a di�erent likelihood: vector of strings that

indicate the likelihood family

• depending on the likelihood we are using, we may have additional

arguments to provide to the inla() call

inla(formula, data, family = "binomial", Ntrials)

• we may have more than one link function corresponding to each family (as

in the logit or probit case).

control.family=list(control.link=list(model="model")))

NB: The list of all possible likelihoods can be found using:

names(inla.models()$link)

Toy Example
most famous dataset ever

data("Seeds")

res = inla(formula= r ~ x1 + x2, data = Seeds,
family = "binomial", Ntrials = n,
control.family = list(control.link=list(model = "logit")))

summary(res)

To see all available likelihood and links you can use:

names(inla.models()$link)
names(inla.models()$likelihood)

Additional Arguments

• control.compute: list with the specification of several computing variables

such as dic which is a Boolean variable indicating whether the DIC of the

model should be computed

res = inla(Petal.Length ~ 1 + Petal.Width, data = iris,
control.compute = list(dic = TRUE))

• control.predictor: list with the specification of several predictor

variables such as link which is the link function of the model, and compute

which is a Boolean variable that indicates whether the marginal densities for

the linear predictor should be computed.

res = inla(Petal.Length ~ 1 + Petal.Width, data = iris,
control.predictor = list(compute = TRUE))

Additional Arguments

• control.compute: list with the specification of several computing variables

such as dic which is a Boolean variable indicating whether the DIC of the

model should be computed

res = inla(Petal.Length ~ 1 + Petal.Width, data = iris,
control.compute = list(dic = TRUE))

• control.predictor: list with the specification of several predictor

variables such as link which is the link function of the model, and compute

which is a Boolean variable that indicates whether the marginal densities for

the linear predictor should be computed.

res = inla(Petal.Length ~ 1 + Petal.Width, data = iris,
control.predictor = list(compute = TRUE))

Even more additional arguments

• inla.emarginal() and inla.qmarginal() calculate the expectation and

quantiles, respectively, of the posterior marginals

• inla.smarginal() can be used to obtain a spline smoothing of the whole

marginal

• inla.tmarginal() can be used to transform the marginals

• inla.zmarginal() provides summary statistics

• inla.dmarginal() computes the density at particular values

	INLA
	R-INLA

